热门搜索:
product display
霞浦县工业厂房质量安全检测鉴定标准
一、依据厂房实际情况,合理开展负荷计算:
范围应控制在12℃~15℃之间。室内采暖的设计温度可在14℃~16℃范围内。而室内空调的设计温度则可控制在26℃~27℃之间。由以上的设计标准我们不难发现,设计温度的值差并不大,有些设计者便错误的认为,工业厂房建筑类的冷暖负荷变化有限,因此与一般民用住宅的暖通空调负荷计算并无明显的差别,这一论断是不科学的。不同类别的厂房及工业车间其负荷大小、组成可以千变万化。一些厂房的新风负荷,可占到总负荷量的一半以上 与一般民用建筑有所不同,工业厂房的采暖与制冷负荷计算较为复杂,我们应依据相关的暖通空调设计规范,确定合理的设计温度范围。一般情况下,工业厂房设计温度,一些厂房则需进行常年连续热加工处理。还有些厂房由于内部生产劳动强度较大,员工分布较密集,发热能量必然持续上升,从而导致其空调的冷、湿负荷比例居高不下。由此不难看出,依据厂房实际生产情况科学的选择负荷计算方式、合理控制厂房暖通空调的设计温度,才能切实达到节能、减排、高效的生产与可持续发展的目标。
二、结合厂区分布,科学选择暖通空调系统的冷热源形式:
在冷热源选择的厂房暖通空调设计环节中,我们可依据厂区的分布情况、能源供给情况作合理的调配。当厂区中以采暖热源供给为主时,可选择高温热水构成热源媒介,而当厂区以工艺用蒸汽热源供热为主时,在综合考虑环保、节能的指标前提下,则可选用蒸汽构成主要热源媒介。由于电能的供应成本较高,因此我们一般不采用电能作为采暖系统的热源。在设计中,如果该厂区既没有蒸汽热源,又缺乏热水热源,我们可在排除车间具备易燃危险的情况下,合理的选择燃气辐射作为主要采暖热源,从而实现高效、经济、低成本的热源供给设计模式。
厂房安全检测内容:
(1) 项目施工情况介绍
(2) 建筑图及结构图的复核
(3) 钢筋布置及保护层厚度
(4) 材料强度检测
(5) 倾斜检测
(6) 施工缺陷及损伤调查
检测内容和方法
1 建筑图及结构图的复核
根据《混凝土结构工程施工质量验收规范》(GB 50204-2015)中现浇混凝土结构允许偏差范围的要求,抽检比例参照附录F执行中F.0.1,抽取构件数的1%进行检验,若施工过程中验收资料齐全则适当减少抽样比例,终综合评定房屋结构施工质量。
可在现场采用手持式激光测距仪和钢卷尺对主要轴线间距和楼层净高进行检测与复核,采用钢卷尺对梁、柱的截面尺寸及楼板厚度进行测量,并与原设计图纸进行比较复核。
2 钢筋布置及保护层厚度检测
根据《混凝土结构工程施工质量验收规范》(GB 50204-2015)中现浇混凝土结构允许偏差范围的要求,抽检比例参照附录E中E.0.11条,抽取构件数的2%进行检验,若施工过程中验收资料齐全则适当减少抽样比例,终综合评定房屋结构施工质量。
可在现场采用钢筋探测仪对主要混凝土构件的配筋数量(包括箍筋间距和纵筋数量)和保护层厚度进行调查。
3 材料强度检测
根据《建筑结构检测技术标准》(GB/T50344-2004)表3.3.13(图4.1)中“检测类别A”的规定对混凝土进行抽样检查,将强度等级相同,浇筑环境相同的混凝土构件作为同一检验批,若施工过程中验收资料、混凝土合格证等齐全则适当减少抽样比例,终综合评定房屋结构施工质量。
一、主厂房布置特点
火力发电厂主厂房属于热力生产车间,工艺布置要求尽量紧凑,厂房结构选型和结构体系首先要 根据工程工艺布置特点,并结合工程地质和抗震设防等要求综合考虑,以保证实现工程项目“安全经济、技术进步、控制工程造价、提高经济效益”的终目标。
多年来火电厂主厂房主要采用四列式前煤仓方案。该方案汽机房、除氧间、煤仓间、锅炉房顺列布置,汽机房、除氧间、煤仓间形成所谓的“四列式”主厂房联合结构体系。
经过工艺设计优化比较,近几年主厂房布置出现三列式前煤仓方案和侧煤仓方案。
侧煤仓方案:煤仓间采用集中侧煤仓,布置在2台锅炉之间。与前面的汽机房及除氧间脱开布置,各自形成立结构。汽机房和除氧间顺列布置,也形成所谓的“三列式”主厂房单跨框-排架结构体系。
二、主厂房钢筋混凝土框架结构抗震性能的薄弱环节
火电厂主厂房钢筋混凝土单跨框-排架结构布置和构件截面尺寸选择,主要取决于工艺系统和设备布置,经常出现楼面标高错层、平面布置不规则、纵向不等跨、高度方向布置不规则,与抗震概念设计有较大距离。所以钢筋混凝土框架结构出现一些抗震概念设计方面的先天性薄弱环节。
1)①火电厂主厂房钢筋混凝土框架结构由于结构布置特点,存在“强梁弱拄”、“短柱”、“异形节点”的薄弱环节,结构在强震时不能实现“大震不倒”,是严重违背结构抗震设计原则的,在结构抗震概念中是不允许的。②煤斗大梁截面往往比柱大得多,结构体系中必然出现“强梁弱柱”。“强梁弱拄”结构体系在强震时柱上先出现塑性铰,不能实现“大震不倒”,楼面标高错层造成框架柱出现“短柱”,“短柱”在强震时会出现脆性破坏,引起结构体系倒塌。③楼面上工艺设备的严重不均匀,造成框架同一个节点上的柱和梁断面差异大,节点的刚域很难准确量化,在强震时会首先出现破坏。
上述薄弱环节是主厂房钢筋混凝土框架结构避免不了的,目前还没有找到明确的解决办法,只是默认了过去的经验和研究成果,过去建成的主厂房钢筋混凝土框架已经经过多种强震的考验是安全的,在工程设计和审核中目前不作深究。
2)主厂房钢筋混凝土框架结构高度限。对于600MW/1000MW机组主厂房的煤仓间框架结构高度一般为50~55m,主厂房钢筋混凝土框架属乙类建筑,按抗震规范的规定,可能出现钢筋混凝土框架结构高度限。但是,规范的条文说明指出:过表列高度的房屋,应进行专门研究和论证,采取有效的加强措施。在工程设计中,只要说明采取的有效加强措施,也就无可非议了。
3)平面布置不规则对结构抗震特别不利。供热机组的主厂房,A列外有披屋时,工程设计中往往单从管道布置经济一些而采用披屋和汽机房连在一起,每一个结构单元的平面严重不规则,在高烈度地震区对结构抗震非常不利。采用主厂房每台机一个结构单元,披屋单一个结构单元,对结构抗震肯定好一些。
4)主厂房钢筋混凝土单跨框-排架结构体系。汶川大地震后,针对震区学校、医院等民用房屋采用单跨钢筋混凝土框架结构体系,在此次强震作用下破坏较多,《建筑抗震设计规范》特别补充了“……高层的框架结构不应采用单跨框架结构,多层框架结构不宜采用单跨框架结构。”严格控制钢筋混凝土单跨框架结构适用范围的要求。
甲、乙类建筑以及高度大于24m的丙类建筑,不应采用单跨框架结构,高度不大于24m的丙类建筑不宜采用单跨框架结构。钢筋混凝土单跨框-排架结构体系在主厂房,钢筋混凝土单框架结构在输煤栈桥、转运站中是避免不了。在立交桥和桥梁桥墩工程中还经常出现单榀单跨或单柱混凝土结构体系。